A pendulum clock loses 12~s a day if the temperature is $40^{\circ}C$ and gains 4~s a day if the temperature is $20^{\circ}C$. The temperature at which the clock will show correct time, and the coefficient of linear expansion (α) of the metal of the pendulum shaft are respectively : (JEE MAIN 2016)

- $\triangle 30^{\circ}C; \ \alpha = 1.85 \times 10^{-3}/{^{\circ}C}$
- **B** $55^{\circ}C$; $\alpha = 1.85 \times 10^{-2}/{\circ}C$
- **6** $25^{\circ}C$; $\alpha = 1.85 \times 10^{-5}/{^{\circ}C}$
- **1** $60^{\circ}C$; $\alpha = 1.85 \times 10^{-4}/{\circ}C$

total of the prenciple of iling that had only the
Time lost/gained by a clock per day = 1 x ST x 86400 sec.
A.T.O. Case 1: 12 = 12 (40-0) x 86400 - 0
J. 100 (1) (1) (1) (1) (1) (1) (1) (1) (1)
Case 2: 4 = 1 x (0-20) x 86400 - (2)
On dividing () by (2)
[0 = 25°C] > Option(c) satisfies
(You may find 'a' by putting 8=25°C in ()
or (2) but no need to find in exam for time saving.)